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Abstract 

This paper presents 3-dimensional (3D) empirical orthogonal functions 
(EOFs) for two cases: (A) an atmospheric 3D EOF using the atmo-
spheric model data from the surface of approximately 1,000 millibar 
[mb] (i.e., 1.0 bar, or 1,000 hPa in the metric unit) atmospheric pres-
sure level to the 1.0 mb level about 50 kilometers from the sea level, 
and (B) a coupled atmosphere-ocean 3D EOF when the top layer of 
an ocean model is taken into account. These 3D EOFs help describe 
the 3D structure of the large-scale climate dynamic patterns, such as 
the Hadley Cells, Walker circulation, and the vertical profiles of the El 
Niño Southern Oscillation (ENSO). The 3D EOF tool developed in this 
research allows people to quantitatively describe and visually display air-
ocean dynamics such as El Nio and the Hadley cells, particularly over 
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the tropical Pacific. Computationally, 3D EOFs are built on a 3D covari-
ance matrix that naturally take the correlation between different pressure 
levels. In this way, 3D EOFs can help answer questions that cannot 
be answered by the conventional 2D EOFs computed layer-by-layer. 

Keywords: Empirical Orthogonal Functions, Covariance, Hadley Cell, El Nio 

1 Introduction 

Empirical orthogonal functions (EOFs) are usually defined as orthonormal 
eigenvectors of a spatial covariance matrix. The first a few EOFs often have 
physical interpretations, such as illustrating spatial patterns of climate vari-
ability (Shen and Somerville (2019), Zhang and Moore (2015)). The eigenvalue 
associated with an EOF quantifies the variance of the climate system described 
by this EOF mode (Shea (2013)). Often the first few modes generally describe 
physically meaningful patterns in the dataset, and the latter modes do not 
(Liang et al (2012)). In physics, they are typically regarded as noise. However, 
mathematically, they can still be useful, such as data reconstruction (Shen 
et al (2017)). 
In the existing literature, EOFs are typically computed in 2D space such 

as in Shen et al (2017), i.e., EOFs are computed from data of a layer of 
climate model output. However, climate dynamics, such as El Niño Southern 
Oscillation (ENSO), have vertical structures. The atmospheric temperature 
at one layer is correlated with another. Thus, the 3D covariance should be 
considered. The purpose of this paper is to compute EOFs in 3D space and 
to describe the climate dynamics represented by the EOFs. Our 3D EOFs 
can help quantify the interactions between sea surface temperature and the 
atmospheric temperature at different pressure layers up to 1.0 mbar. 
Covariance is a measure of how two random variables interact with one 

another. This paper concerns how the temperature at one data point varies 
with the temperature at a separate data point. The monthly 3D climate model 
used has a large number of grid boxes. Computationally, to handle the eigen-
value of a smaller matrix, eigenvalues are computed from a temporal covariance 
matrix. 
This paper will quantify and illustrate the spatial patterns given by the gen-

eral atmospheric circulation model with the 5 meter sea surface temperature 
data serving as a boundary condition in comparison to the spatial patterns of 
the atmosphere only. The EOFs will be calculated for both air-ocean coupled 
data and air only data, in order to demonstrate the significance of air-ocean 
coupling. Due to a much higher heat capacity and much larger density of water 
compared to the air, one would expect that coupling water into the atmospheric 
model will significantly impact the spatial patterns depicted in the lower atmo-
sphere. For this reason, one would expect that El Nio, which is known to be a 
significant factor of sea surface temperature variance, would account for much 
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more variance in the air-ocean coupled model than the air-only model. These 
are true and are quantitatively substantiated by our numerical results. 
The remainder of this paper will be organized as such: Section 2, Data, 

which will describe the datasets and formatting of the space-time matrix; 
section 3, Methods, explaining the mathematics for the EOF compuations; 
section 4, Results, which goes in detail about the spatial patterns and quantifies 
their variances; and section 5, Conclusions and discussion. 

2 Data 

2.1 Temperature data from the NOAA GODAS model 
and the NOAA NCEP 20th Century Reanalysis V3 

The data used for these calculations are two climate models: An atmospheric 
model and an oceanic model. The first is the air temperature data from 
the NOAA-CIRES-DOE Twentieth Century Reanalysis Version 3.0 (20CRV3) 
(Slivinski and coauthors (2019)). The 20CRV3 dataset has no missing data. 
The second is the potential temperature data from the National Centers for 
Environmental Prediction’s (NCEP) Global Ocean Data Assimilation System 
(GODAS)(Behringer and Leetmaa (1998)). In the GODAS dataset, the missing 
data in the land region are represented with NaN. 
The 20CRV3 air temperature dataset is a single netCDF file downloaded 

from https://psl.noaa.gov/data/gridded/data.20thC ReanV3.html. The data 
covers the time from January 1836 to December 2015. The temperature data 
are in Kelvin and on a 1◦ ×1◦ latitude-longitude grid ranging from 90◦S−90◦N 
and from 0◦E − 359◦E. The resulting data is an array with dimension given 
2160 × 28 × 181 × 360. Here, 2160 is the total number of months from January 
1836 to December 2015; 28 is the number of atmospheric pressure levels used 
in the 20CRV3, and the pressure levels are depicted in Table 1; 181 is the 
number of latitude coordinates from 90◦S − 90◦N ; and 360 is the number of 
longitude coordinates from 0◦E − 359◦E. 

Table 1: Twenty eight (28) pressure levels in mb of the 20CRV3 model 

1000 975 950 925 900 850 800 
750 700 650 600 550 500 450 
400 350 300 250 200 150 100 
70 50 30 20 10 5 1 

The GODAS dataset of the ocean water potential temperature in Kelvin 
consists of a series of netCDF files, downloaded from https://psl.noaa.gov/ 
data/gridded/data.godas.html. Each file is for a specific year with twelve 

◦1months. The spatial resolution is a ×1◦ latitude-longitude grid ranging from 3 
74.5◦S − 64.5◦N and 0.5◦E − 359.5◦E. Each GODAS files is a data array of 
dimension 12 × 40 × 418 × 360, 

https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html
https://psl.noaa.gov/data/gridded/data.godas.html
https://psl.noaa.gov/data/gridded/data.godas.html


4 Article 

2.2 Formulation of the space-time data 

The GODAS data for all years ranges from January 1980 - December 2021. The 
dataset is still being updated. However, the 20CRV3 data ranges from January 
1836 - December 2015. The overlap between the two datasets is from January 
1980- December 2015, which is used for our EOF computing. The 20CRV3-
GODAS combined space-time data matrix is created by concatenating each 
flattened month of the GODAS data to each flattened month of the 20CRV3 
data. This leads to a N × Y space-time matrix in which N represents the total 
number of data points N = (28 × 181 × 360) + (418 × 360) = 1, 974, 960; and Y 
represents the number of time steps. Since the data is measured monthly over 
the course of 36 years from 1980 to 2015, thus Y = 36 for any given month, say, 
January. We compute EOFs for each month, i.e., a set of EOFs for January, 
another for February, etc.; all together we compute 12 sets of EOFs. 
For a given layer i of atmosphere at a given time t, the data form a matrix 

in the following format. ⎛ ⎞
T−90,0 T−90,1 ... T−90,359 ⎜⎜T− 0 T− ⎟

89, 89,1 ... T−87,359 ⎟
l ⎜
i,t = ⎜T− ⎟

88,0 T−88,1 ... T−88,359 ⎟ . (1) ⎝ ... ... ... ... ⎠ 

T90,0 T90,1 ... T90,359.5 181×360 

Here, 181 is the number of zonal grid lines, and 360 are the number of 
meridional grid lines, at the 1◦ × 1◦ latitude-longitude resolution. 
The data for the top layer of the ocean water are organized in a similar 

manner: ⎛ ⎞
T−74.5,0.5 T−74.5,1.5 ... T−74.5,359.5 ⎜⎜T−74 .5 T− ⎟

.167,0 74.167,1.5 ... T−74.167,359.5 ⎟
l ⎜ ⎟
w,t = ⎜T−73.833,0.5 T−73.833,1.5 ... T−73.833,359.5 ⎟ (2) ⎝ ... ... ... ... ⎠

T64.5,0.5 T64.5,1.5 ... T64.5,359.5 418×360 

where w indicates water, t is the discrete time in months, 418 is the number of 
the zonal grid lines, and 360 is the number of meridional grid lines. The spatial 
resolution is approximately 0.3325◦ × 1◦ latitude-longitude. The matrix covers 
the ocean from 74.5◦S to 64.5◦N. 
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These matrices are flattened and stacked upon one another column-wise to 
create the following space-time data matrix for January: ⎛ ⎞

l1,1980 l1,1981 ... ll,2015 ⎜⎜ l2,1980 l2,1981 ... l  
⎟

2,2015 ⎟⎜
 = ⎜ l ... ⎟

3,1980 l3,1981  l
X 3,2015 ⎟⎜  ⎜ ... ... ... ... ⎟ (3)⎟⎝ l28,1980 l28,1981 ... l ⎠ 

28,2015 

lw,1980 lw,1981 ... lw,2015 1974960×36 

This matrix has 1,974,960 rows, corresponding to the 1,974,960 grid boxes, 
and 360 columns, corresponding to 36 years from 1980 to 2015. 
When considering only the atmospheric data, we use only the 20CRV3 

dataset and exclude GODAS water data. For consistency, the same time frame 
1980−2015 is used for the EOF computations even though the entire temporal 
range of 20CRV3 is from 1836 − 2015. This results in a slightly smaller space-
time data matrix with dimensions 1, 824, 480 × 36. 

3 Methods 

3.1 Compute the weighted space-time anomaly matrix 

From the initial raw space-time data matrix XN ×Y , the climatology and stan-
dard deviation are computed, in order to compute the standardized anomalies 
from which the EOFs are computed. The climatology and standard deviation 
are N ×1 vectors. The climatology is the arithmetic mean of the row data over 
time, i.e., #X 

" 
Y 

1 
µ = [µi]N×1 = Xit (4)

Y 
t=1 N×1 

with t representing each time step and Y being the total number of time steps. 
The standard deviations for each row are defined as follows: " # 1 XY 

= N×1 Y 
t=1 

2 

N×1 

1 
(Xit − µi)

2S = [σi] (5) 

The standardized anomaly space-time matrix is computed in the following way: �� 
Xit − µi

TN×Y = [Tit]N×Y = (6)
σi N×Y 

The 3D grid boxes have different volumes, relevant to latitude and thick-
ness of each layer. The air and water grid boxes have different heat capacity. 
These differences directly influence the data and their interpretation of cli-
mate dynamics. To accurately incorporate embed climate dynamics in our 3D 
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(a) January Climatology (b) January Standard Deviation 

Fig. 1: The climatology and standard deviation for January shown above have 
been used to calculate the standardized anomalies 

EOFs, we must take these differences into account. It is wpell known that 2D 
EOF computing for a large region requires an area factor cos(φi), where φi 

is the latitude of the centroid of the 2D grid box i. In this paper, we intro-
duce a 3D weight factor that includes latitude, longitude, layer thickness, heat 
capacity, and density: p 

wf = cpρΔzΔθΔφ cos φ. (7) 

Here, cp is the heat capacity which is 4.812 for water and 1.005 for air. This 
term is used to account for the large difference in heat capacity between air and 
water. The symbol ρ is the density of the material, applied not only because 
water has a higher density than air, but the density of the air changes with the 
pressure and altitude. The rest is applied to take account of the geometrical 
dimensions of each grid box. The data point is located at the centroid of a 
small volume of air or water, determined by 

R 2 
E ΔφΔθΔz. (8) 

Here, RE is the radius of Earth, Δz is the thickness of a 3D grid box, Δθ is 
the longitude extent of the grid box, and Δφ is the latitude extent of the grid 
box. These three quantities Δφ, Δθ, Δz are the spatial resolution of the study 
domain when we use the 3D gridded data. The function cos φ is due to the 
spherical geometry of the Earth as the areas near the poles are smaller than 
the areas near the equator for the boxes of the same latitude and longitude 
extents. The expression 

cp ρR
2
E ΔzΔθΔφ cos φXit (9) 

is the heat energy inside the small volume of mass, while 

C 2
th = cpρRE ΔzΔθΔφ cos φ (10) 
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is the thermal mass of the volume. Therefore, our covariance matrix is weighted 
by thermal mass, a physical interpretation of our weighted covariance formula-
tion. The weight factor of our space-time data is the square root of the thermal 
mass for every 3D grid box. 
The Earth’s radius RE is served as a scaling factor and will not affect the 

eigenvalue problem for our EOF calculation. Thus, RE will be dropped from 
here in this paper. 
The data for air temperature in a climate model are usually organized by 

pressure levels in [mbar] instead of meters. In addition, the height will change 
over time because having a constant pressure with changing temperature would 
result in a change of altitude. To keep calculations simple, the altitude hi of the 
top surface of 3D grid box i is approximated using the following hypsometric 
equation (Shen and Somerville (2019)) 

−RT Pi
hi = ln + hi−1 i = 1, 2, ..., 28, (11) 

g Pi−1 

where hi−1 is the altitude of the bottom of 3D grid box i; Pi and Pi−1 are the 
top and bottom pressures of 3D grid box i; g = 9.8 m/s is the acceleration of 
gravity; R = 287.055 J/(kgK) is the gas constant, and T is the temperature 
in Kelvin; 28 is the number of layers used in our atmospheric model. 
The thickness for layer i is then � � 

−RT P
Δzi = i 

hi − hi−1 = ln i = 1, 2, · · · 28, (12) 
g Pi−1 

Because the temperature changes over time, the temperature used to calcu-
late the air height for each data point is the climatology or mean temperature 
over the 36 year time span. The initial pressure, P0 is assumed to be 1013.25 
mbar and the initial height, h0, is assumed to be 0 meters. 
The air density for each grid box is calculated through the equation 

p
ρθ,φ,p = (13)

0.2869Tθ,φ,p 

using the climatology of each data point as the temperature Tθ,φ,p and p to be 
the pressure at the given point. The water density is assumed to be a constant 
1000 kg/m3 . 
The weighted space-time anomaly matrix is then defined h q i 

Tw = Ti,t cp ρiΔziΔθiΔφi cos φi (14) i

where Ti,t are the entries of the standardized space-time anomaly matrix 
TN×Y . 
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The temporal covariance matrix for the model data is 

1
C =  [Tw]

T [Tw], (15)
Y 

in which [Tw]
T is the transpose of the Tw. Since Y << N , this greatly reduces 

the size of the matrix for computing eigenvectors and eigenvalues, which is 
usually done for a spatial covariance matrix. 
For the computation of the eigenvectors, the 1 factor  may be ignored asY

it is a scalar and the eigenvectors will be normalized in the computation. The 
eigenvectors are denoted 

−→ vk k = 1, 2, ..., Y. (16) 

These are principal components for the weighted anomalies. 
The EOFs are the normalized projections of the space-time anomaly matrix 

−→Tw vk
Ek = −→ (17)

kTw vk k 

These are the geometric EOFs and PCs which are orthonormal vectors. 
To reveal the physical properties of the EOFs, the weight factors should be 
removed. They can be done in the following way: 

E
 p k,i 

Ψk,i = . (18) 
cp ρiΔziΔθiΔφi cos φi i

Here, Ψk,i is the ith component of the kth physical EOF. 

3.2 The theory for the weights 

The eigenvalue problem of the weighted covariance function in a 3-D space is 
defined as follows: Z 

 hT 0
a(r, t)T (

0
a r , t)iΨn(r , t)dW (r0 ) = λn Ψn(r), (19) 

V 

in which V is the 3-Dimensional domain under investigation which can be 
in the atmosphere, ocean, or atmosphere and ocean, r is the position vector 
for any spatial point inside V and is determined by latitude, longitude and 
elevation of the point, t is the time, and λn is the eigenvalue that corresponds 
to Ψn(r). 
Here, Ta(r, t) is the temperature anomaly field, h·i stands for the expected 

value, Ψn(r) are continuous eigenfunctions, W (r) is the weight for the 
covariance function hTa(r, t)T

0
a(r , t)i and is specified by 

dW (r) = cpρ cos φdzdθdφ, (20) 
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The integral problem may be discretized as such: 

XN  
hTa(ri, t)Ta(rj )iΨn(rj )ΔW (rj ) = λnΨn(ri) 

j=1 

This equation can be re-organized into the following symmetric form between 
i and j: 

N � X p q �q
ΔW (ri)Ta(ri, t) ΔW (rj )Ta(rj , t) ΔW (rj )Ψn(rj ) (21) 

j=1 p
= λn ΔW (ri)Ψn(ri) (22) 

Denote p
Tw(ri, t) = Ta(ri, t) ΔW (ri) (23) 

as the weighted temperature anomalies and denote p
En(ri) = Ψn(ri) ΔW (ri) (24) 

as the geometric EOFs. Therefore, the computational procedure for Ek,i (see 
Eqs. (17) and (18)) in the previous subsection is substantiated. 
The geometric EOFs are computed through 3D covariance shown above. 

They possess the orthonormal properties: 

XN  
E2 

n (ri) = 1 (Normality) (25)
i=1 XN  

Em(ri)En(ri) = 1 when m = n, (Orthogonality). (26) 
i=1 

These two properties are often used to check numerical results of EOFs, 
because correct EOFs necessarily satisfy these conditions. 

6

4 Results 

4.1 Air-Ocean coupled EOFs 

This method has been used to calculate EOFs and PCs for all months, but for 
the results section, this paper will primarily focus on the EOFs from January 
due to the presence of El Nio Southern Oscillation (ENSO) and the northern 
polar vortex bomb. 
Figure 2 shows EOF1 of January temperature, ranging from the sea surface 

up to 10 mbar. From Figure 4, the first mode explains nearly 16% of the total 
variance. El Nio is a signal in the eastern Pacific (Jadhav et al (2015)), but 
explains less variance for the higher atmosphere. ENSO explains much of the 
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temperature variation when the sea surface data of the GODAS data is coupled 
with the 20CRV3. EOF1 shows a strong eastern Pacific El Nio pattern, rising 
in the atmosphere (see Fig. 5). As shown in Figs. 5a and 5b, the ENSO pattern 
weakens higher in the atmosphere. The cross sections in Figs. 5c and 5d no 
longer have the dominant ENSO shape as the lower atmosphere, but there still 
exists a warm bubble in the eastern Pacific from the El Nio signal. Beyond 100 
mbar, the ENSO signal disappears. From Fig. 6b, a strong separation exists 
between the stratosphere and the troposphere. In Fig. 5f, there is another signal 
present. It is a region that seems to split over two main regions: the northern 
North America and the northeastern Asia. This may be the transition of the 
vortex split into two daughter vortices described in Matthewman et al (2009). 
Figure 6 has two vertical cross sections. Figure 6a is a zonal average from 
180◦E −230◦E and clearly shows a phenomenon symmetric about the equator. 
The cold regions that extend from approximately 15◦ to 40◦ are Hadley cells. 
The Hadley cells are formed as warm air shoots up from the equator, it cools 
and circulates downward and outward (Johanson and Fu (2009)). As shown in 
Fig. 6a, there is a major upward motion of warm air near the equator, splitting 
around 800 mbar and circulating back down into colder air. Figure 6b is a 
zonal average and clearly shows the effects of the El Nio signal rising through 
the atmosphere. The signal remains the strongest up until approximately 750 
mbar in the primary red region and continues to rise up until approximately 
150 mbar. This parallels the vertical cross section of the Walker circulation 
with westerly anomaly winds in the lower atmosphere reaching to the 800 
mbar, and easterly anomaly winds in the higher atmosphere reaching up to 
100 mbar (Bell et al (2014)). PC1 (see Fig. 3) shows oscillations approximately 
every three to four years, trending upward. This may be the result of ENSO 
as the El Nio signal is present in EOF1. 

Fig. 2: January Air and Ocean EOF1 

EOF2 in Fig. 7 shares similarities with EOF1 in terms of overall shape, 
but the dominant effects are inverted. From Figure 3, the second eigenvalue of 
the modes explains approximately 11% of the total variance. Just as in EOF1, 
ENSO is also present in EOF2. Figure 8 demonstrates a different pattern for 
EOF2 than from EOF1. In Fig. 8a and Fig. 8b, the warm El Nio signal grows 
as it reaches higher altitudes. This contrasts the shrinking signal in EOF1. 
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Fig. 3: January PC1 and PC2 

Fig. 4: January Air and Ocean Scree Plot 

In Fig. 8c and Fig. 8d, there are two main cold signals in the northern and 
southern Pacific. This greatly contrasts with Fig. 5c and Fig. 5d in which 
the notable signal was the warm region in the eastern Pacific. In Fig. 8e, the 
50 mbar cross section clearly resembles an inversion of the 250 mbar cross 
section (Fig. 8d). In Fig. 8f, the 10 mbar cross section has notable signals in 
the northern hemisphere. Unlike the northern polar vortex signal from Fig. 
5f, these signals are mostly above northern Eurasia, east Asia, and Central 
America. Figure 9 shows the vertical cross sections for EOF2. Fig. 9a shows 
a Hadley in the central Pacific. Figure 9b shows a vertical cross section of 
the zonal average from 20◦S − 10◦N . In contrast to Fig. 6b, Fig. 9b does not 
have one narrowing El Nio signal rising. As shown in Fig. 8, the warm El Nio 
signal grows and spreads across the Pacific. PC2 (see Fig. 3) follows a similar 
pattern to PC1 with oscillations occurring every three to four years. As EOF2 
similarly demonstrates ENSO in the lower atmosphere, PC2 may be explaining 
the ENSO phenomenon as well. 
Through comparing EOF1 and EOF2 of the air-ocean coupled model, there 

is clear modal mixing in the computations of the EOFs. The El Nio signal 
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Fig. 5: The following layers are all subsections of the same EOF 

Fig. 6: These cross sections are proportional to pressure, not physical space 

appears in both EOF1 and EOF2. This explains the relative closeness in per-
centage variance between modes 1 and 2. Thus, by adding the two mode 
percentage variances, one can conclude that El Nio accounts for approximately 
30 % of the total variance of air and ocean temperature when coupled. Like-
wise, Hadley cells are present in the first two modes of the air-ocean model as 
well. The focus on the first two modes is primarily because in Fig. 4, the first 
two modes each account for over 12 % of the percentage variance while EOF3 
and the following modes regard for less than 6 % of the percentage variance, 
a considerable drop in sizes of the eigenvalues. The air-only model results will 
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Fig. 7: January Air and Ocean EOF2 

Fig. 8: The following layers are cross sections of EOF2 

also only demonstrate the first two modes, but as the scree plot will illustrate, 
there will be considerable differences. 

4.2 Air Only EOFs 

The same EOF computations have been done to only the 20CRV3 air dataset. 
The Δφ and Δθ factors may be ignored for this specific set of calculations 
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Fig. 9: Vertical Cross Sections of January Air-Ocean Coupled EOF2 

since all of the data is on a 1◦ × 1◦ grid. Likewise, the cp was also ignored 
for computations since all of the data is atmospheric. In excluding the surface 
layer of the GODAS data, the overall 3D pattern seems similar to the 3D 
air-ocean coupled EOF Mode 1. However, further analysis of each layer and 
vertical cross sections will detail the significant differences in EOF Mode 1 due 
to the oceanic coupling. 

Fig. 10: January Air Temperature EOF1 

Figure 10 shows EOF1 of January temperature ranging from the 1000 mbar 
up to the 10 mbar layer. From Figure 12, the first eigenvalue of the modes 
explains nearly 25% of the total variance. This is significantly higher than the 
first mode of the air-ocean coupled model, which only accounted for nearly 16 
% of the total variance. The El Nio signal that was prominently in EOF1 of 
the air-ocean coupled model is no longer as strong in EOF1 of the air-only 
model. This is evidently clear when comparing Figs. 14b and 6b. The El Nio 
signal in the 20◦S − 10◦N zonal average is a much fainter green, rather than 
the prominent yellow. The dominant ENSO pattern in Figs. 5a and 5b are not 
present in Figs. 13a and 13b. Instead, there is another warming signal in the 
southern Pacific ocean in Figs. 13b and 13c . From Fig. 13a-c, there are strong 
signals in the southern Pacific and weaker signals in the northern Pacific. 
However, at 250 mbar, in Fig. 13d, the signals in the northern and southern 
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polar regions are much stronger and span all longitudes. From Fig. 14a, there 
is a clearer separation between the troposphere and the stratosphere than in 
6. In Fig. 13f, the northern polar vortex bomb signal is present once more, but 
unlike in Fig. 5f, the vortex bomb is more centered over east Asia. This seems 
to suggest that oceanic coupling has a significant role in the northern polar 
vortex bomb in the North American region. The two vertical cross sections 
in Fig. 14 are also range from 180◦E − 230◦E and from 20◦S − 10◦N . Unlike 
the air-ocean EOF1 vertical cross section (see Figure 6), the Hadley cells are 
not present in the air-only cross section of Fig. 14a. This suggests that Hadley 
cells are not as prominent in the atmosphere when ignoring the sea surface 
interactions over the central Pacific. In Fig. 14b, the El Nio signal is still present 
in the eastern Pacific, however, in comparison to Fig. 6b, the El Nio signal is 
much weaker compared to when sea surface temperature is coupled. PC1 (see 
Fig. 11) demonstrates a much stronger modulation than PC1 of the air-ocean 
coupled model (see Fig. 3) which may imply that the dynamics concerning the 
air-only mode 1 vary much greater than the dynamics of the air-ocean coupled 
mode 1. 

Fig. 11: January PC1 and PC2 with only 20CRV3 

In Fig. 15, a major difference in the 20CRV3-only EOF2 is the much weaker 
separation between the troposphere and the stratosphere. From Fig. 12, the 
second eigenvalue of the modes explains approximately 11% of the total vari-
ance. Unlike in the air-ocean coupled model, the percentage variance difference 
between EOF1 and EOF2 for the air-only EOF1 and EOF2 is drastically large. 
In Fig. 3, the difference in percentage variance between mode 1 and mode 2 
was approximately 2%. However, in Fig. 12, the difference is approximately 
14% . This major difference is due to the modal mixing in the air-ocean cou-
pled model. Unlike in EOF1, ENSO has a dominant presence in EOF2. Figure 
16 is much more similar to Fig. 5 than Fig. 13. There is an ENSO pattern 
that weakens as it reaches the higher atmosphere. Figures 16c and 16d have 
the similar warm bubble in the eastern Pacific but is much larger. In Fig. 16f, 
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Fig. 12: January Air Only Scree Plot 

there is a major cooling anomaly in the northern hemisphere over North Amer-
ica and Russia. The anomaly is negatively strongest over North America. The 
weaker separation between the troposphere and stratosphere seen in Fig.12 is 
apparent again in Fig. 17 with the warm equatorial air rising upwards to the 
top layers in Fig. 17a and the El Nio signal in Fig. 17b directly connects to 
the stratosphere. The warming in the lower atmosphere is much more domi-
nant in EOF2 than in EOF1 so the separation between the troposphere and 
stratosphere is not as apparent. The Hadley cells which have not been seen in 
EOF1, are in EOF2 (see Fig. 17a). Likewise, the El Nio signal is much stronger 
in EOF2 (see Fig. 17b) than in EOF1 (see Fig. 14b). PC2 (see Fig. 11) has a 
similar upward trend to PC1, with a three to four year oscillation cycle. This 
oscillation pattern is the result of ENSO which explains the larger amplitude 
of the oscillations as ENSO varies the atmosphere more greatly. 

5 Conclusions and Discussions 

This paper has demonstrated the differences in heat interactions between an 
air-ocean coupled model and an air-only model through the computation of 
EOFs in 3D space. The data is first arranged into a space-time matrix as 
shown in section 2. The EOFs have been computed via temporal covariance 
which has been explained in further detail in section 3. Computing covariance 
in 3D space allowed the quantification of interactions of data points between 
different layers rather than within the same layer. This allowed the vertical 
cross sections to see spatial patterns in Figs. 6, 9, 13, and 16. The EOFs 
are organized in the order of importance based on the relative size of their 
associated eigenvalues. This determines the percentage variance each mode 
accounts for in the atmospheric model. An attempt to avoid the modal mixing 
was to use rotational EOFs, with the varimax rotation which commonly results 
in more physically interpretable patterns Shea (2013), but the results were 
similar and did not resolve the issue of modal mixing. 
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Fig. 13: The following layers are all part of the same 3D EOF1 

The contrasting results between the air-ocean coupled model and the 
20CRV only model have been illustrated in section 4. In the air-ocean coupled 
model, certain climate phenomena such as ENSO and Hadley cells are much 
more prominent due to the contribution of water. Due to modal mixing, ENSO 
accounted for approximately 30 % of the variance with the air-ocean coupled 
model whereas it only accounted for approximately 11 % of the variance in 
the air-only model. Likewise, Hadley cells were present in the first mode of the 
air-ocean coupled model, but not the air-only model. This suggests that water 
has a significant role in the formation of Hadley cells and the El Nio signal in 
the eastern Pacific. Although the computations have been done for all months, 
the results primarily focused on January because of ENSO and the northern 
polar anomaly. 
The following results have been visualized in both 2-dimensional cross 

sections and 3-dimensional interactive figures which may be found at https: 
//doi.org/10.5281/zenodo.7073022 in addition to other visualization methods 
such as a GIF animation. 

https://doi.org/10.5281/zenodo.7073022
https://doi.org/10.5281/zenodo.7073022
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Fig. 14: Vertical Cross Sections of January Air-Only EOF1 

Fig. 15: January Air Only EOF2 
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Fig. 17: Vertical Cross Section of Air Only EOF2 
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